散熱器分類
相關新聞

新聞內容

您當前所在位置:鎮江新區宏圖散熱器廠>>新聞中心>>行業資訊

電子散熱器的散熱方式常識科普


來源:www.hzhfgj.com

電子散熱器的散熱方式常識科普主要闡述了自然散熱,強製散熱, 液體冷卻散熱,隔離散熱等方式的相關專業知識,便於參考。

在電子器件的高速發展過程中,電子元器件的總功率密度也不斷的增大,但是其尺寸卻越來越較小,熱流密度就會持續增加,在這種高溫的環境中勢必會影響電子元器件的性能指標,對此,必須要加強對電子元器件的熱控製。如何解決電子元器件的散熱問題是現階段的重點。對此,文章主要對電子元器件的散熱方法進行了簡單的分析。

電子散熱器散熱圖
  電子元器件的高效散熱問題,受到傳熱學以及流體力學的原理影響。電氣器件的散熱就是對電子設備運行溫度進行控製,進而保障其工作的溫度性以及安全性,其主要涉及到了散熱、材料等各個方麵的不同內容。現階段主要的散熱方式主要就是自然、強製、液體、製冷、疏導、熱隔離等方式。
  1. 自然散熱的冷卻方式
  自然散熱或者冷卻方式就是在自然的狀況之下,不接受任何外部輔助能量的影響,通過局部發熱器件以周圍環境散熱的方式進行溫度控製,其主要的方式就是導熱、對流以及輻射集中方式,而主要應用的就是對流以及自然對流幾種方式。其中自然散熱以及冷卻方式主要就是應用在對溫度控製要求較低的電子元器件、器件發熱的熱流密度相對較低的低功耗的器材以及部件之中。在密封以及密集性組裝的器件中無需應用其他冷卻技術的狀態之中也可以應用此種方式。在一些時候,對於散熱能力要求相對較低的時候也會利用電子器件自身的特征,適當的增加其與臨近的熱沉導熱或者輻射影響,在通過優化結構優化自然對流,進而增強係統的散熱能力。
  2. 強製散熱的冷卻方式
  強製散熱或冷卻方法就是通過風扇等方式加快電子元器件周邊的空氣流動,帶走熱量的一種方式。此種方式較為簡單便捷,應用效果顯著。在電子元器件中如果其空間較大使得空氣流動或者安裝一些散熱設施,就可以應用此種方式。在實踐中,提升此種對流傳熱能力的主要方式具體如下:要適當的增加散熱的總麵積,要在散熱表麵產生相對較大的對流傳熱係數。
  在實踐中,增大電子散熱器表麵散熱麵積的方式應用較為廣泛。在工程中主要就是通過翅片的方式拓展散熱器的表麵麵積,進而強化傳熱效果。而翅片散熱方式可以分為不同的形式,在一些熱耗電子器件的表麵以及空氣中應用的換熱器件。應用此種模式可以減少熱沉熱阻,也可以提升其散熱的效果。而對於一些功率相對較大的電子期間,則可以應用航空中的擾流方式進行處理,通過對散熱器中增加擾流片,在散熱器的表麵流場中引入擾流則可以提升換熱的效果。
  當然, 電子散熱器本身材料的選擇跟其散熱性能有著直接的關係目前,散熱器的材料主要是用鋁經過壓鑄型加折疊鰭/衝壓薄鰭而製成的,鋁具有高的熱傳導率(198W/mK)和不易氧化的優點,另外,傳導率大於200W/mk的AIN陶瓷,用這種材料製成的散熱器具有高的熱傳導率、不導電、長期暴露在空氣中不會氧化的優點,這種材料已在電子元件的封裝技術和行波管中得到了應用。此外,用矽材料製作熱沉在微型係統中也得到了廣泛的應用,通過化學加工方法可以在矽材料上得到理想深寬比的微通道。
  3. 液體冷卻散熱方法
  對電子元器件中應用液體冷卻的方法進行散熱處理,是一種基於芯片以及芯片組件形成的散熱方式。液體冷卻主要可以分為直接冷卻以及間接冷卻兩種方式。間接液體冷卻方式就是其應用的液體冷卻劑與直接與電子元件進行接觸,通過中間的媒介係統,利用液體模塊、導熱模塊、噴射液體模塊以及液體基板等輔助裝置在發射的熱元件中之間的進行傳遞。直接的液體冷卻方式也可以稱之為浸入冷卻方式,就是將液體與相關電子元件直接接觸,通過冷卻劑吸收熱量並且帶走熱量,主要就是在一些熱耗體積密度相對較高或者在高溫環境中應用的器件。
  4. 散熱或冷卻方法的製冷方法
  散熱或冷卻方法的製冷方法主要有製冷劑的相變冷卻以及Pcltier製冷兩種方式,在不同的環境中其采取的方式也是不同的,要綜合實際狀況合理應用。 1 製冷劑的相變冷卻 就是一種通過製冷劑的相變作用吸收大量熱量的方式,可以在一些特定的場合中冷卻電子器件。而一般狀態主要就是通過製冷劑蒸發帶走環境中的熱量,其主要包括了容積沸騰以及流動沸騰兩種類型。在一般狀況之下,深冷技術也在電子元器件的冷卻中有著重要的價值與影響。在一些功率相對較大的計算機係統中則可以應用深冷技術,不僅僅可以提升循環效率,其製冷的數量以及溫度範圍也較為廣泛,整個機器設備的結構相對的較為緊湊且循環的效率也相對較高。2 Pcltier製冷 通過半導體製冷的方式散熱或者冷卻處理一些常規性的電子元器件,具有裝置體積小、安裝便捷且質量較強、便於拆卸的優勢。此種方式也稱之為稱熱電製冷方式,就是通過半導體材料自身的Pcltier效應,在直流電通過不同的半導體材料在串聯的作用之下形成電偶,可以通過在電偶兩端吸收熱量、放出熱量,這樣就可以實現製冷的效果。此種方式是一種產生負熱阻的製冷技術與手段,其穩定性相對較高,但是因為其成本相對較高,效率也相對較低,在一些體積相對較為緊湊,且對於製冷要求較低的環境中應用。其散熱溫度≤100℃;冷卻負載≤300W。
  5. 散熱或冷卻中的能量疏導方式
  就是通過傳遞熱量的傳熱元件將電子器件散發的熱量傳遞給另一個環境中。而在電子電路集成化的過程中,大功率的電子器件逐漸增加,電子器件的尺寸也越來越小。對此,這就要求散熱裝置自身要具有一定的散熱條件,而散熱裝置自身也要具有一定的散熱條件。因為熱管技術其自身具有一定的導熱性特征,具有良好的等溫性特征,在應用中具有熱流密度可變性且恒溫特性良好、可以快速適應環境的優勢,在電子電氣設備的散熱中應用較為廣泛,可以有效的滿足散熱裝置的靈活、高效率且可靠性的特征,現階段在電氣設備、電子元器件冷卻以及半導體元件的散熱方麵中應用較為廣泛。熱管是一種高效率且通過相變傳熱方式進行熱傳導的模式,在電子元器件散熱中應用較為廣泛。在實踐中,必須要對不同的種類要求,對熱管進行單獨的設計,分析重力以及外力等因素的影響等合理設計。而在進行熱管設計過程中要分析製作的材料、工藝以及潔淨度等問題,要嚴格控製產品質量,對其進行溫度監控處理。
  6. 熱隔離散熱方法
  熱隔離就是通過絕熱技術進行電子散熱器件散熱以及冷卻處理的影響。其主要分為真空絕熱以及非真空絕熱兩種形式。在電子元件的溫度控製上其主要應用的就是非真空類型的絕熱處理。而非真空的絕熱就是通過熱導熱係數的絕熱材料開展。此種絕熱形式也是一種容積絕熱的方式,直接受絕熱材料厚度因素的影響,而材料的導熱係數的物理參數也直接影響其隔熱效果。熱隔離方式主要就是在局部器件的溫度影響,要加強控製,組織高溫器件以及相關物體產生的升溫影響,進而保障整個元件的可靠性,延長設備的應用壽命。在實踐中,因為溫度直接影響絕熱材料的傳熱性能,在一般狀況之下如果溫度上升就會增加絕熱材料。同時,溫度升高也會增加絕熱材料中的多孔介質中的內輻射。在應用隔熱措施的時候,設備運行時間如果相對較長其實際的隔熱效果則就越差。同時,如果溫度升高就會導致多孔絕熱材料自身的總導熱係數的不斷增加。對此,必須要保障隔熱材料的整體性能,進而提升應用效果。
  在集成電路的發展過程中,電子元件的密度與熱量密度也在持續增加,其散熱問題也逐漸凸顯。對此,高質量的散熱以及冷卻方式可以保障電子元器件的性能指標。在實踐中,要綜合具體的電子元器件的發熱功率、自身的特性,合理的應用不同的散熱以及冷卻方式與手段,要綜合具體的應用場合,合理選擇應用方式與手段,進而凸顯電子元器件的性能指標。

上一篇:電力光伏逆變器散熱使用鋁型材插片散熱器
下一篇:電子散熱器選型在采暖係統行業使用很廣泛


相關新聞



相關產品


Baidu
map